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1. Introduction

It is well known that fixed-order perturbation theory is not reliable for quantities involv-

ing several disparate scales. In such cases, higher-order corrections are enhanced by large

logarithms of scale ratios. The standard solution to this problem is to split the calcu-

lation into a series of single-scale problems by successively integrating out the physics

associated with the largest remaining scale. Perturbative logarithms are then resummed

by renormalization-group (RG) evolution from the larger scales to the smaller ones. For

collider processes, resummation is traditionally performed by other means, since it was not

always clear how to systematically integrate out the physics associated with high scales in

such cases.

The simplest example of a high-energy process with a scale hierarchy which necessitates

resummation is deep-inelastic scattering (DIS) in the threshold region. As the Bjorken scal-

ing variable x → 1, the invariant mass of the hadronic system produced in the decay, MX =
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Q
√

1−x
x (neglecting the nucleon mass), becomes much smaller than the momentum transfer

Q. The presence of the two scales is manifest in the QCD factorization theorem [1 – 3]

F ns
2 (x,Q2) = H(Q2, µ)Q2

∫ 1

x

dz

z
J
(
Q2 1 − z

z
, µ

) x

z
φns

q

(x

z
, µ

)
, (1.1)

for the non-singlet part of the structure function F2(x,Q2). The result (1.1) is valid in

the threshold region at leading power in M2
X/Q2 ≈ (1 − x) and Λ2

QCD/M2
X . As long as

MX À ΛQCD, both the jet function J(M2
X , µ) and the hard function H(Q2, µ) can be

evaluated in perturbation theory, whereas the parton distribution function φns
q (ξ, µ) is a

non-perturbative object. The result for the hard function involves single and (Sudakov)

double logarithms of the form αn
s lnm(Q/µ), with m ≤ 2n, while the integral over the jet

function produces logarithms αn
s lnm(MX/µ). Irrespective of the value of the renormaliza-

tion scale µ, the fixed-order result contains large logarithms.

Traditionally, the resummation of these logarithms is performed in moment space. The

threshold region of small MX is probed by large-N moments. The relevant scale in Mellin

space is Q/
√

N , so that the large perturbative logarithms depend on the moment parameter

N . In [1, 2] it was shown that these logarithms can be absorbed into a resummation

exponent GN , defined by integrals over two radiation functions Aq(αs) and Bq(αs),

GN (Q2, µ) =

∫ 1

0
dz

zN−1 − 1

1 − z

[∫ (1−z)Q2

µ2

dk2

k2
Aq(αs(k)) + Bq

(
αs(Q

√
1 − z)

)
]

. (1.2)

The functions Aq and Bq are determined by matching with results from fixed-order per-

turbation theory and are currently known at three-loop order, enabling a nearly com-

plete threshold resummation to next-to-next-to-next-to-leading logarithmic (N3LL) accu-

racy [4]. The resummed momentum-space structure function F2(x,Q2) is obtained from

the moment-space expression by an inverse Mellin transformation.

This approach to threshold resummation has several drawbacks. The first is related

to integrations over the Landau pole in the running coupling. These occur twice: once

in the integrals over the functions Aq and Bq in the resummation exponent, and once

again when the inverse Mellin transform is taken to obtain results in momentum space.

To perform the resummation one needs to specify a prescription for how to deal with

these poles. Various methods have been proposed in the literature, such as the “minimal

prescription” [5] or the “tower expansion” [6]. The difference between these prescriptions is

a power-suppressed effect. Since factorization theorems do receive power corrections, this

does not appear as a problem at first sight. However, as discussed in [7], the Landau-pole

singularity in the resummed expression can induce large unphysical power corrections.

In the example of the Drell-Yan process, the ambiguity in the threshold resummation

amounts to a power correction of order ΛQCD/MX , while the physical power corrections

to the process scale as Λ2
QCD/M2

X . The fact that resummations with RG methods [7, 8]

do not involve Landau-pole ambiguities illustrates that these effects do not have a direct

physical interpretation. In particular, a Landau-pole ambiguity does not necessarily imply

the presence of a commensurate renormalon ambiguity [7]. Further drawbacks are that in
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the traditional resummation formalism the separation of contributions from the hard and

jet scales is not transparent, and while the function Aq has a clear interpretation as the

cusp anomalous dimension familiar from the renormalization theory of Wilson lines [9, 10],

the function Bq is not easily identified with a field-theoretical object.

In this paper we use RG techniques to perform the resummation of perturbative loga-

rithms directly in momentum space. The starting point is the factorization formula (1.1),

which we rederive using soft-collinear effective theory (SCET) [11 – 14]. In this framework,

the hard function H and the jet function J are matching coefficients. The hard func-

tion arises from a first matching step, in which the electroweak current is matched onto a

corresponding effective-theory current operator. In a second step, the partons associated

with the hadronic final state are integrated out, giving rise to the jet function. Threshold

logarithms are resummed by solving the RG equations for these matching functions, using

techniques presented in [15]. Existing results from higher-order perturbative calculations

enable us to perform the matching and resummation up to next-to-next-to-leading order

(NNLO) in RG-improved perturbation theory, corresponding to the N3LL approximation

in the standard approach. We show that the results obtained in momentum space are

formally equivalent to the more familiar moment-space results by deriving a formula which

connects them order by order in perturbation theory. However, integrals over the Landau

pole never appear in our momentum-space formulation, and the effective-theory matching

functions and anomalous dimensions have a clear field-theoretical interpretation. Further-

more, we obtain a simple analytic expression for the resummed structure function, while

the Mellin inversion which is necessary in the traditional approach can only be performed

numerically. As a result, it is straightforward to match our resummed expressions onto

fixed-order calculations valid outside the threshold region. Finally, we stress that our ap-

proach to resummation in x-space is free of the pathologies related to large unphysical

power ambiguities found in [5]. In fact, it exhibits a better apparent perturbative conver-

gence than the conventional approach.

In the context of SCET, the generic factorization formula for DIS has been discussed

previously in [16], while the case x → 1 has been studied in [17 – 22]. These papers make

conflicting statements about the factorization properties of DIS in the endpoint region.

Most of the differences are resolved after observing that, near the endpoint, the parton dis-

tribution function receives contributions from two distinct non-perturbative modes. While

the two modes cannot be factorized perturbatively, their presence must nonetheless be

taken into account to correctly translate the effective-theory result into the QCD factor-

ization theorem (1.1). In [7, 17, 19, 21, 23], the resummation was performed by solving

the RG equations for the moments. This avoids Landau-pole singularities in the exponent,

but as we show here, it is possible to solve the equations directly in momentum space.

While threshold resummation in DIS is of limited phenomenological importance, it is

a relatively simple process for which the perturbative results needed in our calculation are

known at NNLO. For this reason, it provides an especially instructive example with which

to develop our resummation formalism. However, many other processes fulfill factorization

theorems of the same structure, in which the rate factorizes into a hard contribution times

a jet function convoluted with a nonperturbative matrix element, and our formalism also

– 3 –
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applies to these cases. An example is heavy-particle production near threshold, which

includes the Drell-Yan process in the limit where the invariant mass of the produced lepton

pair is close to the center-of-mass energy in the collision, as well as Higgs production in the

same kinematic region. Another example is provided by inclusive B-meson decays in the

endpoint region. Our final result for the resummed DIS structure function is very similar

to the factorized expression for radiative B → Xsγ decay as derived in [24, 25]. In fact,

both processes involve the same jet function, given by the quark propagator in light-cone

gauge.

The outline of the paper is as follows. In section 2 we use SCET to obtain the QCD

factorization formula for DIS near the endpoint, providing a translation between the effec-

tive theory and standard discussions. In section 3 we work out the technique for threshold

resummation in momentum space, derive a compact expression for the factorized struc-

ture function, and give results for the perturbative matching coefficients valid to NNLO in

perturbation theory. In section 4 we convert our results to moment space and show how

they are connected to those obtained in the standard approach. The appendix gives the

perturbative expansions of the RG functions used in our analysis.

2. Factorization in DIS

In this section we derive the QCD factorization formula for the non-singlet DIS structure

function F ns
2 (x,Q2), using the technology of SCET [11 – 14]. We consider DIS of electrons

off a nuclear target, e− + N(p) → e− + X(P ), as illustrated in figure 1. All non-trivial

hadronic physics is encoded in the hadronic tensor

W µν(p, q) = i

∫
d4x eiq·x 〈N(p)|T{J†µ(x)Jν(0)} |N(p)〉

=

(
qµqν

q2
− gµν

)
W1 +

(
pµ − qµ p · q

q2

)(
pν − qν p · q

q2

)
W2 , (2.1)

averaged over the nucleon spin. Here Jµ = ψ̄γµψ is the electromagnetic current. The

scalar functions Wi can be expressed in terms of the kinematic invariants

Q2 = −q2 , x =
Q2

2p · q , (2.2)

where q = P − p is the momentum of the virtual photon, and x is the Bjorken scaling

variable. For simplicity we focus on the flavor non-singlet component of the cross section,

which is insensitive to the gluon distribution in the nucleon. It can be obtained by taking

the difference of the DIS cross sections for scattering off different target nuclei.

The first step in analyzing the hadronic tensor is to identify which momentum regions

give non-vanishing contributions to the Feynman diagrams for W µν in perturbative QCD.

Each region is represented by a set of fields in SCET. The identification of regions can

be done in any Lorentz frame. The number of modes and their relative scaling is Lorentz

invariant.1 Two particularly convenient reference frames are the target rest frame, where

1We disagree with the claim of [17] that fewer momentum regions contribute in the target rest frame

than in the Breit frame.
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q = P − p

p P

Figure 1: Kinematics of DIS.

pµ = (m, 0, 0, 0) with m the nucleon mass, and the Breit frame, where the virtual photon

carries momentum qµ = (0, 0, 0, Q). The two frames are related to each other by a Lorentz

boost along the z-direction. Introducing the light-cone decomposition

pµ = (n · p)
n̄µ

2
+ (n̄ · p)

nµ

2
+ pµ

⊥ ≡ pµ
+ + pµ

− + pµ
⊥ , (2.3)

where nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1) are two light-like basis vectors (n · n̄ = 2), a

generic momentum pµ
Lab = pµ

+ + pµ
− + pµ

⊥ in the target rest frame transforms into pµ
Breit =

eη pµ
+ + e−η pµ

− + pµ
⊥ in the Breit frame, with the rapidity η of the boost given by

e±η =
Q

2mx

(√

1 +
4m2x2

Q2
± 1

)
. (2.4)

We shall discuss the different regions in the Breit frame, where the final-state hadronic jet

moves along the z-direction, while the target nucleon moves in the opposite direction. The

light-cone projections of the relevant momenta are (all perpendicular components vanish

by choice of coordinates)

n · q = −Q , n̄ · q = Q ,

n · p = m eη =
Q

x
+

m2x

Q
+ . . . , n̄ · p = m e−η =

m2x

Q
+ . . . ,

n · P = Q
1 − x

x
+

m2x

Q
+ . . . , n̄ · P = Q +

m2x

Q
+ . . . , (2.5)

where the neglected terms are of order m4x3/Q3. The invariant mass MX of the final-state

hadronic jet is given by

M2
X = P 2 = Q2 1 − x

x
+ m2 ≈ Q2 1 − x

x
À m2 . (2.6)

In the last step we have used that for an inclusive process the jet mass must be much larger

than m ∼ ΛQCD. Otherwise, the cross section cannot be analyzed using short-distance

methods.

While the momentum of the virtual photon is fixed by kinematics, the final-state jet

and target nucleon consist of jets of near on-shell partons, whose momenta have scalings

consistent with the relations above. We introduce a small expansion parameter λ ∼ m/Q ∼

– 5 –
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ΛQCD/Q and quote the components (p+, p−, p⊥) of parton momenta in units of Q. Assume

first that x = O(1) is not very close to 1. Then, for the purposes of power counting, it

follows that q ∼ Q (1, 1, 0), p ∼ Q (1, λ2, 0), and P ∼ Q (1, 1, 0). The partons making up

the initial and final hadronic states have generic scalings

target nucleon: pc̄ ∼ Q (1, λ2, λ) (anti-collinear) ,

final-state jet: ph ∼ Q (1, 1, 1) (hard) , (2.7)

where the term “anti-collinear” refers to collinear fields propagating in the negative z-

direction. These relations change for the special case where x is close to 1, such that

ε = 1 − x becomes parametrically small. The momentum of the final-state jet now scales

like P ∼ Q (ε, 1, 0). While the valence quark in the target nucleon struck by the photon

still carries an anti-collinear momentum pvalence ∼ Q (1, λ2, λ), the remaining partons in the

nucleon now have total momentum scaling like p−pvalence ∼ Q (ε, λ2, λ). Consequently, the

partons making up the final-state jet and the target remnant jet have momenta scaling like

final-state jet: phc ∼ Q (ε, 1,
√

ε) (hard-collinear) ,

target remnants: psc ∼ Q (ε, λ2,
√

ελ) (soft-collinear) . (2.8)

In these relations, the scaling of the perpendicular momentum components follows from

the requirement that the individual partons be nearly on-shell. The terminology for the

“hard-collinear” and “soft-collinear” modes follows [26] and [27]. In the traditional lit-

erature on factorization in DIS [1 – 3] the soft-collinear modes were referred to as “soft”.

Relation (2.6) implies that λ2 ¿ ε ¿ 1, and there is no need to specify the relative scaling

between ε and λ in more detail. All that matters for the factorization analysis is that

p2
hc ∼ Q2ε is a perturbative scale, while p2

c̄ ∼ Q2λ2 is not.

The discussion of factorization for the generic case, where x = O(1) but not very close

to 1, is straightforward [16]. Hard modes are described by QCD, whereas the anti-collinear

partons making up the target nucleon can be described in SCET. There is no need to include

any other modes, since the only relevant regions are hard and anti-collinear. In interactions

of the anti-collinear fields with hard fields, only the large plus components pc̄+ ∼ Q of the

anti-collinear momenta should be kept at leading order in power counting. Correspondingly,

the anti-collinear fields must be multipole expanded about x− = (n̄ · x)n/2, i.e., φc̄(x) =

φc̄(x−)+ . . .. Integrating out the hard modes by matching onto SCET yields an expression

for the discontinuity of the hadronic tensor of the form

1

π
Im W µν =

∫ 1

x

dξ

x
C(Q2, x/ξ, µ)

∫
dt

2π
e−iξn·p t 〈N(p)| ψ̄(tn)[tn, 0] γµ /n

2
γν ψ(0) |N(p)〉 ,

(2.9)

where C = δ(1 − x/ξ) + O(αs) is a matching coefficient in the effective theory, and the

object [tn, 0] is a straight Wilson line along the n light-cone. We have used that the SCET

Lagrangian for a single collinear sector is equivalent to the QCD Lagrangian [12] in order to

replace the SCET fields by the usual QCD fields. The identification of the nucleon matrix

element with the QCD parton distribution function is then automatic (see relation (2.21)

below), and one arrives at the standard factorization formula.

– 6 –
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The derivation of the factorization formula for x → 1 is more complicated. It involves a

two-step matching procedure similar to that used for inclusive semi-leptonic and radiative

B decays in the endpoint region [24 – 26, 28]. In a first matching step, hard modes are

integrated out by matching QCD onto a version of SCET containing hard-collinear, anti-

collinear, and soft-collinear fields. We will refer to this intermediate effective theory as

SCET(hc, c̄, sc) for short. The matching function associated with this first step is the

hard coefficient CV . Because the sum of a hard-collinear momentum and an anti-collinear

momentum has an invariant mass (phc + pc̄)
2 ∼ Q2 and must be counted as hard, the

intermediate effective Lagrangian does not contain vertices coupling the hard-collinear fields

to anti-collinear ones. These fields interact only through the exchange of soft-collinear

“messenger” fields. However, the soft-collinear modes can be decoupled from the hard-

collinear ones by means of a field redefinition. After this decoupling, it is possible to

integrate out the hard-collinear scale by matching onto a low-energy theory SCET(c̄, sc)

involving only anti-collinear and soft-collinear modes. The matching function associated

with this step is the jet function J . Having integrated out the perturbative modes, the

final step is to evaluate the matrix element of the remaining operator defined in the low-

energy effective theory. An important part of the factorization analysis is to show that

this matrix element is equivalent to the QCD parton distribution function evaluated in the

limit x → 1, as studied e.g. in [1, 3]. We will show that this is indeed the case, and that

the soft-collinear modes play an important role in this identification.

The appropriate Lagrangian for SCET(hc, c̄, sc) is a generalization of the effective

Lagrangian for collinear and soft-collinear fields derived in [27, 29]. It contains hard-

collinear quark and gluon fields ξhc and Ahc, anti-collinear quark and gluon fields ξc̄ and

Ac̄, and soft-collinear quark and gluon fields θsc and Asc. The hard-collinear fields move

along the z-direction, and hence /n ξhc = 0. The anti-collinear and soft-collinear fields move

in the opposite direction, so /̄n ξc̄ = 0 and /̄n θsc = 0. The two collinear sectors can only

interact via soft-collinear exchange, and at leading power only soft-collinear gluons are

involved in these interactions. The corresponding effective Lagrangian at leading order in

the expansion parameters ε and λ is [27, 29]

LSCET(y) = ξ̄hc
/̄n

2
[in · Dhc + gn · Asc(y−)] ξhc − ξ̄hc i /Dhc⊥

/̄n

2

1

in̄ · Dhc
i /Dhc⊥ ξhc

+ ξ̄c̄
/n

2
[in̄ · Dc̄ + gn̄ · Asc(y+)] ξc̄ − ξ̄c̄ i /Dc̄⊥

/n

2

1

in · Dc̄
i /Dc̄⊥ ξc̄

+ pure glue terms + soft-collinear Lagrangian , (2.10)

where all fields without position argument are to be evaluated at the point y. The effective

Lagrangian is invariant under a set of hard-collinear, anti-collinear, and soft-collinear gauge

transformations, whose precise form can be found in [27, 30].

An important property of the SCET Lagrangian is that soft-collinear gluons can be

decoupled from the hard-collinear and anti-collinear fields through field redefinitions in-

volving Wilson lines [12, 27]. This decoupling is essential for the factorization analysis

below. Diagrammatic factorization proofs also rely on the decoupling of “soft” gluons

– 7 –
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from collinear fields. The underlying physics is that soft gluons couple to collinear partons

through eikonal vertices, a feature explicit in the SCET Lagrangian (2.10).

2.1 Matching of the current

The first step in the factorization procedure is to integrate out hard fluctuations by match-

ing QCD onto the intermediate effective theory SCET(hc, c̄, sc). The kinematic restrictions

implied by the limit x → 1 simplify this first matching step. Since we are dealing with the

region of phase space where the final-state jet is hard-collinear, there are no contributions

to the hadronic tensor where the anti-collinear partons at points 0 and x are connected by

hard gluons. It is therefore sufficient to integrate out hard fluctuations at the level of the

electromagnetic current. Time-ordered products of two currents are not needed until the

second step.

We match the QCD current Jµ(x) = (ψ̄γµψ)(x) onto a current in SCET containing a

hard-collinear quark and an anti-collinear anti-quark. The form of the resulting operator

is dictated by gauge invariance. The appropriate matching relations for the QCD fields are

ψhc(x) → (W †
hcξhc)(x) , ψc̄(x) → (W †

c̄ ξc̄)(x−) , (2.11)

where Whc is the hard-collinear Wilson line

Whc(x) = P exp

(
ig

∫ 0

−∞

ds n̄ · Ahc(x + sn̄)

)
(2.12)

along the n̄-direction, and Wc̄ is the analogous anti-collinear Wilson line along the n-

direction. The multipole expansion in (2.11) requires some explanation. In the hadronic

tensor (2.1), the points 0 and x are connected by a hard-collinear jet propagating through

a cloud of soft-collinear partons. This implies that the position argument x scales as a

hard-collinear quantity, x ∼ (1, ε−1, ε−
1

2 ). It follows that not all components of the anti-

collinear and soft-collinear momenta must be kept in the calculation of Feynman graphs in

the effective theory. The minus and perpendicular components of anti-collinear and soft-

collinear momenta are much smaller than the corresponding components of hard-collinear

momenta and so should be expanded out. On the other hand, the large plus component

n · p ∼ Q of the target nucleon is canceled by the momentum component n · q of the

current and turned into a momentum component of order εQ, which is of the same order

as the plus component of a hard-collinear or soft-collinear momentum. For this reason, it

would be incorrect to set x− = 0 in the argument of the soft-collinear fields entering the

effective current operator, even though this is the correct multipole expansion of Lagrangian

interactions between soft-collinear and anti-collinear fields [27]. Therefore, when matching

the current operator onto SCET, one must multipole expand both the anti-collinear and

soft-collinear fields about x−.

The two expressions in (2.11) are invariant under hard-collinear and anti-collinear

gauge transformations, while under a soft-collinear gauge transformation both composite

fields, W †
hcξhc and W †

c̄ ξc̄, transform into Usc(x−) times themselves. Thus, at tree level the

gauge-invariant matching relation for the current is

(ψ̄γµψ)(x) → (ξ̄c̄Wc̄)(x−) γµ
⊥(W †

hcξhc)(x) . (2.13)

– 8 –
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Only a single Dirac structure is possible for massless quarks. Beyond tree level the matching

relation at leading power gets generalized to (see the analogous discussions in [13, 29])

(ψ̄γµψ)(x) →
∫

dt C̃V (t, n · q, µ) (ξ̄c̄Wc̄)(x−) γµ
⊥(W †

hcξhc)(x + tn̄)

= CV (−n · q n̄ · P , µ) (ξ̄c̄Wc̄)(x−) γµ
⊥(W †

hcξhc)(x) . (2.14)

In the first line we have used that n̄ ·∂ derivatives of hard-collinear fields are unsuppressed

in SCET power counting, allowing for arbitrary displacements of these fields along the n̄

light-cone. In the second line, the object P is the hard-collinear momentum operator, and

the Wilson coefficient CV is the Fourier transform of the position-space Wilson coefficient

C̃V appearing in the first line. In the case at hand, the relevant components −n · q ≈
n̄ ·P ≈ Q are fixed by kinematics (see the relations (2.5)), and so we may write CV (Q2, µ)

for simplicity.

2.2 Matching of the hadronic tensor

The next step in the matching procedure is to evaluate the hadronic tensor in the intermedi-

ate effective theory. Inserting the SCET current (2.14) into (2.1), we find the leading-power

expression

W µν(p, q) → |CV (Q2, µ)|2 i

∫
d4x eiq·x (2.15)

×〈N(p)|T{(ξ̄c̄Wc̄)(x−) γµ
⊥(W †

hcξhc)(x)(ξ̄hcWhc)(0) γν
⊥(W †

c̄ ξc̄)(0)} |N(p)〉 .

The interactions of soft-collinear gluons with hard-collinear fields in (2.10) can be removed

by the field redefinitions [12, 27]

ξhc(x) → Sn(x−) ξ
(0)
hc (x) , Aµ

hc(x) → Sn(x−)A
µ(0)
hc (x)S†

n(x−) , (2.16)

which imply (W †
hcξhc)(x) → Sn(x−) (W

(0)†
hc ξ

(0)
hc )(x). Here

Sn(x) = P exp

(
ig

∫ 0

−∞

ds n · Asc(x + sn)

)
(2.17)

is a soft-collinear Wilson line along the n-direction. The redefined hard-collinear fields with

superscripts “(0)” are decoupled from soft-collinear fields and thus interact only among

themselves. After the field redefinition the hadronic matrix element in (2.15) factorizes

into a vacuum matrix element of hard-collinear fields and a nucleon matrix element of

anti-collinear and soft-collinear fields. In the second matching step, we “integrate out”

the hard-collinear fields, which can be done using perturbation theory because the hard-

collinear scale is a short-distance scale, p2
hc ∼ Q2(1 − x) À Λ2

QCD. Since in a single

(hard-)collinear sector SCET is equivalent to full QCD [13], the vacuum matrix element of

hard-collinear fields can be rewritten in terms of the QCD matrix element [31]

〈0|T{(W (0)†
hc ξ

(0)
hc )(x) (ξ̄

(0)
hc W

(0)
hc )(0)} |0〉 = 〈0|T

[
/n/̄n

4
W †(x)ψ(x) ψ̄(0)W (0)

/̄n/n

4

]
|0〉

=

∫
d4k

(2π)4
e−ik·x /n

2
n̄ · kJ (k2, µ) . (2.18)
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c c c

(a) (b) (c)

Figure 2: Examples of diagrams involving anti-collinear gluon exchange. The dashed (dotted) lines

represent anti-collinear (hard-collinear) quark lines. The wavy lines represent the electromagnetic

currents. In graph (a) the anti-collinear gluon is part of the initial-state nucleon and the final-state

propagator is hard-collinear, as required in the effective theory. In graphs (b) and (c) the anti-

collinear gluon is part of the final state, whose invariant mass then becomes hard. Graphs (b) and

(c) are therefore not part of the effective-theory representation of the hadronic tensor as x → 1.

The object W (x) denotes a Wilson line analogous to (2.12) but with gauge fields in full

QCD. Color indices are suppressed; the correlator is proportional to the unit matrix in

color space. We define the jet function through the imaginary part of J as (see e.g. [32])

J(p2, µ) =
1

π
Im

[
iJ (p2, µ)

]
. (2.19)

The jet function has support for p2 > 0.

At this point it is important to emphasize a subtlety related to the matching of the

forward-scattering amplitude in full QCD onto operator matrix elements in SCET. The

anti-collinear composite fields W †
c̄ ξc̄ and ξ̄c̄Wc̄ in (2.15) are not allowed to communicate

via anti-collinear particle exchanges, but only through exchanges of soft-collinear partons.

The exchange of anti-collinear particles between the two currents in (2.1) is kinematically

forbidden in the region x → 1, as this would lead to a final-state invariant hadronic mass

MX ∼ Q. Since the intermediate state is hard instead of hard-collinear, diagrams such as

those shown in figure 2(b) and (c) are not part of the effective-theory representation of the

hadronic tensor in the region x → 1. Such “forbidden” graphs are nonetheless generated

(and yield non-vanishing results) if the SCET Feynman rules used for the matching of

the electromagnetic current are naively applied to the hadronic tensor. We can construct

a set of Feynman rules appropriate for the hadronic tensor by introducing different anti-

collinear fields for the “in” and “out” states in the forward-scattering amplitude, and

restricting interactions between the two anti-collinear sectors to soft-collinear exchange.

These effective-theory Feynman rules produce graphs such as that in figure 2(a), but not

those in figure 2(b) and (c). For simplicity of notation, we will suppress the “in” and “out”

labels on the anti-collinear fields, but one must make this distinction when evaluating the

hadronic tensor in the effective theory. The fact that the graphs (b) and (c) in figure 2 are

kinematically forbidden in the endpoint region was overlooked in previous treatments of

DIS in SCET [17, 19]. As we will explain at the end of section 2.3, their inclusion would

lead to a double counting.

After integrating out the hard-collinear fields, the resulting nucleon matrix element in
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the low-energy effective theory can be reduced to

〈N(p)| (ξ̄c̄Wc̄)(x−)Sn(x−) γµ
⊥

/n

2
γν
⊥ S†

n(0) (W †
c̄ ξc̄)(0) |N(p)〉

= −〈N(p)| (ξ̄c̄Wc̄)(x−) [x−, 0]sc (gµν
⊥ − iεµν

⊥ γ5)
/n

2
(W †

c̄ ξc̄)(0) |N(p)〉 , (2.20)

where [x−, 0]sc = Sn(x−)S†
n(0) is a straight Wilson line of soft-collinear gluon fields along

the n light-cone. In the second line we have defined the objects gµν
⊥ = gµν− 1

2 (nµn̄ν +n̄µnν)

and εµν
⊥ = 1

2 εµναβn̄αnβ, and also used that /̄n ξc̄ = 0. The anti-symmetric structure vanishes

after averaging over the nucleon spin. The appearance of the symmetric structure gµν
⊥

implies the Callan-Gross relation Q2 W2 = 4x2 W1 at leading power and to all orders in

perturbation theory. Hereafter, we thus focus on the structure function W1.

Consider now the standard definition of the quark distribution function in QCD [33],

φns
q (ξ, µ) =

1

2π

∫ ∞

−∞

dt e−iξtn·p 〈N(p)| ψ̄(tn) [tn, 0]
/n

2
ψ(0) |N(p)〉 , (2.21)

where [tn, 0] is a straight Wilson line of gauge fields in full QCD, and the superscript “ns”

indicates the flavor non-singlet component of the distribution function. In the Breit frame,

where the proton moves along the n̄-direction, ψ and ψ̄ can be considered anti-collinear

fields. For generic values of ξ these fields carry only a portion of the proton’s longitudinal

momentum. The remaining portion (1−ξ)n·p is still large and can be shared between other

anti-collinear partons exchanged between the two points 0 and tn. A different picture is

called for in the limit ξ → 1, where the anti-collinear valence quarks ψ and ψ̄ carry almost

all of the longitudinal momentum [3]. In this case, the residual momentum component

(1 − ξ)n · p is small, and the remaining partons are soft-collinear. Each valence quark

is described by an anti-collinear jet propagating through the soft-collinear cloud made up

of the remaining partons. The two anti-collinear jets communicate through soft-collinear

gluon exchange only.

The distinct roles played by the valence and remaining partons as ξ → 1 make it

appropriate to introduce an effective field-theory description for the parton distribution

function, in which it is matched onto an operator involving anti-collinear and soft-collinear

fields in SCET. The most general, gauge-invariant form the relation (2.21) can be matched

onto in the ξ → 1 limit reads

φns
q (ξ, µ)|ξ→1 =

1

2π

∫ ∞

−∞

dt e−iξtn·p 〈N(p)| (ξ̄c̄Wc̄)(tn) [tn, 0]sc
/n

2
(W †

c̄ ξc̄)(0) |N(p)〉 . (2.22)

It is understood that the anti-collinear fields located at the points 0 and tn interact only

via soft-collinear gluon exchange. Both (2.22) and the QCD matrix element (2.21) depend

on the single invariant p2 = m2, so there is no non-trivial hard matching coefficient. The

matrix element (2.22) is precisely the object we encountered in (2.20). We can use this

correspondence along with some simple algebra to find

W1 = |CV (Q2, µ)|2 i

∫
d(n · k) n̄ · qJ (q2 + n · k n̄ · q, µ)φns

q

(n · k
n · p , µ

)
. (2.23)
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The structure function F ns
2 (x,Q2) equals

∑
q e2

q x 1
π Im W1, where the eq are quark electric

charges. Inserting the definition of the jet function (2.19), and recalling that q2 = −Q2

and n · p n̄ · q = Q2/x + power corrections, we obtain the final result for the factorization

formula

F ns
2 (x,Q2) =

∑

q

e2
q |CV (Q2, µ)|2 Q2

∫ 1

x
dξ J

(
Q2 ξ − x

x
, µ

)
φns

q (ξ, µ) . (2.24)

This formula is valid to all orders in perturbation theory and at leading power in (1 − x)

and Λ2
QCD/M2

X . The argument of the jet function takes values between 0 and M2
X , where

the total jet invariant mass was given in (2.6). The equivalent form (1.1) is obtained by

substituting ξ = x/z. At tree-level, this formula evaluates to the familiar parton-model

expression F ns
2 (x,Q2) =

∑
q e2

q xφns
q (x).

Relation (2.24) is the standard form of the QCD factorization formula for the DIS

structure function in the limit x → 1 [1 – 3], which we have derived here using SCET. We

hope our derivation helps resolve some of the disagreements in the literature. Soft-collinear

messenger modes obviously play a crucial role in the derivation, as the parton distribution

function at large ξ is defined in terms of these fields. The proper effective-theory description

of the parton distribution function thus requires two distinct non-perturbative modes. This

element is missing from [17, 20], where it was argued that only one non-perturbative mode

is needed, either because the soft graphs vanish in the Breit frame calculation, or because

the effective-theory formulation in the target rest frame involves only one non-perturbative

mode from the beginning. Although we disagree with these statements (the second of which

would violate reparameterization invariance in the effective theory), our explicit one-loop

results agree with those derived in these papers. This is because our findings imply that

parton evolution in the endpoint region can be described simply by taking the x → 1

limit of the Altarelli-Parisi splitting functions, which is effectively what was done in the

calculations of [17]. Our explicit one-loop results also agree with those in [18], where the

power counting ε = 1 − x ∼ λ = ΛQCD/Q was adopted. While this counting is possible

and natural in view of the hierarchy λ2 ¿ ε ¿ 1, it does not imply that the soft-collinear

scale m2(1 − x) depends on the scale Q, and the presence of this scale does not translate

into non-perturbative Q-dependence in the parton distribution function, as was suggested

in [18]. Finally, we have shown that the soft-collinear contributions are precisely such that

they can be absorbed into the parton distribution function. We therefore do not confirm

the claims of soft contributions outside the parton distribution function made in [19]. The

same conclusion as ours was reached in [21, 22], where it was argued that the infrared

divergences due to collinear and soft emissions can be absorbed in the standard QCD

parton distribution function, although [21] did not discuss how to obtain this result in the

effective theory. In [22] it was claimed that there is a double-counting problem in SCET,

which must be remedied by making certain soft subtractions from the collinear matrix

element. We have shown here that there is no such problem. Double counting occurs only

if one fails to notice that collinear emissions such as those shown in figure 2(b) and (c)

must not be included in the effective-theory calculation near the endpoint. Similar to [17],

the discussion in [22] fails to distinguish the virtualities of hard-collinear and anti-collinear
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Figure 3: Soft-collinear Wilson line WC .

modes, and it overlooks the fact that the smallest scale in the problem is not Q2(1 − x)2

but m2(1 − x).

In the next subsection, we will emphasize the importance of soft-collinear Wilson loops

in determining the RG properties of the effective theory.

2.3 Decoupling transformation and cusp singularities

An important step in the derivation of the factorization formula (2.24) was the identification

of the parton distribution function for ξ → 1 with the SCET matrix element on the right-

hand side of (2.22). We can simplify this relation further by decoupling the soft-collinear

gluons from the anti-collinear fields with the help of the field redefinitions

ξc̄(y) → Sn̄(y+) ξ
(0)
c̄ (y) , Aµ

c̄ (y) → Sn̄(y+)A
µ(0)
c̄ (y)S†

n̄(y+) , (2.25)

where the soft-collinear Wilson line Sn̄ is defined in analogy with (2.17), but with n replaced

by n̄. Above, y is a generic argument of a term in the SCET Lagrangian. The multipole

expansion of the soft-collinear fields about y+ must be done everywhere except at the

location of the current, where x scales as a hard-collinear (not anti-collinear) quantity, see

above. At this one point, we have instead

ξc̄(x−) → Sn̄(x−) ξ
(0)
c̄ (x−) , Aµ

c̄ (x−) → Sn̄(x−)A
µ(0)
c̄ (x−)S†

n̄(x−) . (2.26)

It follows that

φns
q (ξ, µ)|ξ→1 =

1

2π

∫ ∞

−∞

dt e−iξtn·p 〈N(p)| (ξ̄(0)
c̄ W

(0)
c̄ )(tn)

/n

2
WC(t) (W

(0)†
c̄ ξ

(0)
c̄ )(0) |N(p)〉 ,

(2.27)

where

WC(t) = S†
n̄(tn) [tn, 0]sc Sn̄(0) = S†

n̄(tn)Sn(tn)S†
n(0)Sn̄(0) (2.28)

describes a closed Wilson loop consisting of the junction of a Wilson line extending from

−∞ to 0 along the n̄-direction, a finite-length segment from 0 to tn along the n-direction,

and another Wilson line from tn to −∞ along the n̄-direction, see figure 3. Anti-collinear

virtual particles can be exchanged inside the brackets (W
(0)†
c̄ ξ

(0)
c̄ ) and (ξ̄

(0)
c̄ W

(0)
c̄ ) in (2.27)

– 13 –



J
H
E
P
0
1
(
2
0
0
7
)
0
7
6

but not between them, see figure 2. These exchanges give rise to non-perturbative renor-

malization factors Z
1

2 (m,µ)u(p), where u(p) is an on-shell spinor, and the only invariant

is p2 = m2. The above formula then reduces to

φns
q (ξ, µ)|ξ→1 = Z(m,µ)

n · p
2π

∫ ∞

−∞

dt ei(1−ξ)tn·p 〈WC(t)〉 . (2.29)

The matrix element of the soft-collinear Wilson loop in the above equation has to be taken

in the background of the target remnants. This form of the parton distribution function

for ξ → 1 coincides with eq. (2.12) of [3] (where our factor Z is called H). Performing the

same decoupling transformation (2.26) on the SCET current (2.14) yields

(ψ̄γµψ)(x) → CV (Q2, µ) (ξ̄
(0)
c̄ W

(0)
c̄ )(x−)S†

n̄(x−)Sn(x−) γµ(W
(0)†
hc ξ

(0)
hc )(x) . (2.30)

Once again, the soft-collinear fields reside in a closed Wilson loop, this time extending from

−∞ to the point x− along the n-direction, and returning to −∞ along the n̄-direction.

The factorization formula (2.29) is quite formal and not very useful in practical terms,

because both the anti-collinear and the soft-collinear contributions are nonperturbative.

However, the appearance of soft-collinear Wilson loops in the SCET representation of the

parton distribution function (2.29) and the electromagnetic current (2.30) determines their

RG properties. In both cases, ultraviolet singularities related to Sudakov double logarithms

are governed by the so-called cusp anomalous dimension, Γcusp, which is a universal quantity

of perturbative QCD [3, 9, 10]. We will confirm this structure in our explicit calculations

below.

Away from the endpoint there are no soft-collinear contributions. All partons in the

proton have anti-collinear scaling, and all fields in the definition of the parton distribution

function are allowed to interact. However, including anti-collinear exchange graphs (such

as the ones shown in figure 2) in the endpoint region leads to a double counting, as their

contribution is given by soft-collinear exchange. The inclusion of these graphs led [19]

to conclude that the low-energy matrix element appearing in the endpoint region is the

usual parton distribution function multiplied by a Wilson line corresponding to WC(t).

The same was found in [17], which states that there are no radiative corrections associated

with the Wilson loop because the corresponding loop diagrams are scaleless. While those

Feynman graphs are indeed scaleless, this does not imply that WC(t) is trivial: the infinite

length of the Wilson lines Sn̄ leads to infrared divergences, which need to be regularized

in perturbative calculations [9, 10].

2.4 Power corrections

Our focus in this paper is on the leading-order factorization formula (2.24), but it is im-

portant to keep in mind that this result receives power corrections in the small parameters

ε and λ. A discussion of power corrections using SCET has been carried out for the closely

related case of semi-leptonic inclusive B decay in the endpoint region, where it was found

that the power corrections factorize order by order in 1/mb [34 – 36]. It is evident that the

same procedure applies here, so the effective theory offers a systematic tool to calculate

power corrections for DIS near the endpoint.
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hc
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(a) (b) (c)

Figure 4: Examples of subleading time-ordered products in SCET which give rise to power cor-

rections. Graph (a) leads to a perturbatively calculable power-suppressed jet function, while (b)

and (c) lead to subleading parton distribution functions depending on three light-cone variables.

The procedure involves the two-step matching used in the leading-order case. A system-

atic treatment of the dominant power corrections requires to match the SCET Lagrangian

and electromagnetic current at subleading order in ε and λ. We will not perform this com-

plete matching here, but instead limit ourselves to a qualitative discussion of the two types

of power corrections: those to the jet function, which can be calculated perturbatively, and

those to the parton distribution function, which cannot. We give examples of each, and

explain how to obtain them with effective field-theory techniques.

Corrections to the jet function first appear at order (1−x)αs(µi) and can be calculated

perturbatively. To identify the full set of such corrections, one must match the electromag-

netic current onto SCET up to order ε. Time-ordered products of the subleading SCET

currents containing extra hard-collinear fields compared to the leading-order result (2.14)

build up a set of power-suppressed jet functions convoluted with the leading-order par-

ton distribution. As an example, consider the time-ordered product J ′†(x)J ′(0) involving

two insertions of the O(
√

ε) suppressed current J ′ = n̄µξ̄c̄Wc̄W
†
hci /Dhc⊥ξhc. The relevant

one-loop diagram is shown in figure 4(a). Decoupling the soft-collinear fields and factoriz-

ing them into the nucleon matrix element leaves the following vacuum matrix element of

hard-collinear fields

〈0|T{(W (0)†
hc /D

(0)
hc⊥ξ

(0)
hc )(x) (ξ̄

(0)
hc

←−
/D

(0)

hc⊥W
(0)
hc )(0)} |0〉 . (2.31)

The discontinuity of the Fourier-transformed matrix element defines a subleading jet func-

tion scaling as (1 − x)αs(µi). As in the case of the leading-order jet function, one could

equally well calculate the matrix element in full QCD. This particular subleading jet func-

tion has been discussed previously in terms of a “non-local OPE” very close in spirit to

SCET in [37], and was reconsidered in the context of SCET more recently in [19].

Non-perturbative power corrections are given in terms of a basis of subleading par-

ton distribution functions. These are defined through nucleon matrix elements of power-

suppressed SCET(c̄, sc) operators involving extra anti-collinear and soft-collinear fields

compared to the leading-order matrix element (2.21). To identify the complete basis, we

would need to match both the current and the Lagrangians Lc̄+sc and Lhc+sc to subleading

order. An important simplification can be made by absorbing all time-ordered products

involving insertions of the subleading Lagrangian terms Lc̄+sc into a redefinition of the
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leading-order parton distribution function φ(ξ). This can always be done, because such

subleading parton distribution functions can only depend on a single light-cone variable

ξ and are convoluted with the same jet function. On a more formal level, it amounts

to not treating power-suppressed Lc̄+sc terms in the interaction picture, as is normally

done. Identifying the remaining non-perturbative structure then reduces to calculating

power-suppressed time-ordered products involving subleading SCET currents or insertions

of Lhc+sc.

The dominant subleading parton distribution function is related to the time-ordered

product of the power-suppressed current arising from the multipole expansion of the anti-

collinear fields, according to (W †
c̄ ξc̄)(x) = [1+x⊥ ·∂⊥ + 1

2(x⊥ ·∂⊥)2 + . . .](W †
c̄ ξc̄)(x−). Since

x is a hard-collinear quantity, x⊥ · ∂⊥φc̄ ∼ (λ/
√

ε)φc̄. Thus the time-ordered product of

J ′′†(x)J(0), with

J ′′(x) =
1

2
(ξ̄c̄Wc̄)(x−) (

←−
∂ · x⊥)2(W †

hcξhc)(x) (2.32)

results in a power correction of order λ2/ε. Because the power suppression comes from the

current, the associated subleading parton distribution function depends only on a single

light-cone variable, as was the case at leading order.

Also interesting is the new multi-local structure related to interactions of soft-collinear

fields with the jet. As an example, consider the time-ordered product

J (0)†(x)J (0)(0)L′
hc+sc(y)L′

hc+sc(z) , (2.33)

involving two insertions of the O(λ) suppressed Lagrangian term L′
hc+sc ∼ θ̄sc Ahc⊥ξhc. The

relevant tree-level Feynman diagram is shown in figure 4(b). Performing the decoupling

transformation and factorizing the soft-collinear fields leads to a tetra-local nucleon matrix

element. An additional tetra-local correction of the same order is related to the emission

of two transverse soft-collinear gluons, through the Lagrangian term L′′
hc+sc ∼ ξ̄hc Asc⊥ξhc,

as illustrated in figure 4(c). The parton distributions φi(ξ1, ξ2, ξ3) defined by the scalar de-

composition of the Fourier-transformed matrix elements appear in a three-fold convolution

with a perturbatively calculable jet function, to be treated as power corrections of order

λ2αs(µ). For DIS, such multi-local hadronic structures have not yet been considered in the

literature.

3. Renormalization-group evolution and resummation

The factorization formula for the DIS structure function derived in the previous section

contains physics associated with different momentum scales factorized into a hard coeffi-

cient function CV , a jet function J , and a non-perturbative parton distribution function

φns
q . These three objects depend on a scale µ at which the corresponding effective-theory

operators are renormalized. The hard matching coefficient and the jet function need to

be calculated using perturbative QCD. These calculations can be done at fixed order only

when the scale is chosen so as to avoid large logarithms: the function CV should be com-

puted at a hard scale µh ∼ Q, while the jet function should be computed at an intermediate

scale µi ∼ MX ∼ Q
√

1 − x. The results of these calculations must then be evolved to the
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common scale µ in (2.24) by solving RG evolution equations. An advantage of the effective-

theory formulation is that the RG equations can be solved directly in momentum space.

The method has recently been outlined in [15]; in this section we give a more detailed

derivation, filling in the technical steps.

3.1 Evolution of the hard function

We begin by discussing the evolution of the hard matching coefficient CV in (2.14). At

leading power there is a single gauge-invariant SCET operator the QCD current can match

onto, and hence there is no operator mixing. The exact evolution equation takes the form

d

d ln µ
CV (Q2, µ) =

[
Γcusp(αs) ln

Q2

µ2
+ γV (αs)

]
CV (Q2, µ) , (3.1)

The appearance of the cusp logarithm and its coefficient can be explained starting from (2.30)

using arguments presented in [29]. This term in the evolution equation is associated with

Sudakov double logarithms. The remaining term, γV , accounts for single-logarithmic evo-

lution.

The exact solution to the evolution equation (3.1) is

CV (Q2, µ) = exp
[
2S(µh, µ) − aγV (µh, µ)

](
Q2

µ2
h

)−aΓ(µh,µ)

CV (Q2, µh) , (3.2)

where µh ∼ Q is a hard matching scale at which the Wilson coefficient CV is calculated

using fixed-order perturbation theory. The Sudakov exponent S and the exponents an are

the solutions to the differential equations

d

d ln µ
S(ν, µ) = −Γcusp(αs(µ)) ln

µ

ν
,

d

d ln µ
aΓ(ν, µ) = −Γcusp(αs(µ)) , (3.3)

and similarly for aγV , subject to the initial conditions S(ν, ν) = aΓ(ν, ν) = aγV (ν, ν) = 0

at µ = ν. These equations can be integrated by writing d/d ln µ = β(αs) d/dαs, where

β(αs) = dαs/d ln µ is the QCD β-function. This yields the exact solutions [24, 26]

S(ν, µ) = −
αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)

α∫

αs(ν)

dα′

β(α′)
, aΓ(ν, µ) = −

αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)
, (3.4)

and similarly for the function aγV . The perturbative expansions of the anomalous di-

mensions and the resulting expressions for the evolution functions valid at NNLO in RG-

improved perturbation theory are given in the appendix.

3.2 Evolution of the jet function

The RG evolution of the jet function is more complicated. It was recently shown that the

exact integro-differential evolution equation obeyed by the function J(p2, µ) is [31]

dJ(p2, µ)

d ln µ
=−

[
2Γcusp(αs) ln

p2

µ2
+2γJ (αs)

]
J(p2, µ)−2Γcusp(αs)

∫ p2

0
dp′2

J(p′2, µ)−J(p2, µ)

p2−p′2
.

(3.5)
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We encounter again the cusp anomalous dimension, and in addition a new function γJ ,

which has been calculated at two-loop order in [31].

An important object in the derivation of the solution to this equation is the associated

jet function j̃(L,µ), where L = ln(Q2/µ2). This function has originally been defined in

terms of an integral over the jet function followed by a certain replacement rule [25]. More

elegantly, the associated jet function can be obtained from J by the Laplace transformation

j̃
(

ln
Q2

µ2
, µ

)
=

∫ ∞

0
dp2 e−sp2

J(p2, µ) , s =
1

eγEQ2
. (3.6)

The inverse transformation is

J(p2, µ) =
1

2πi

∫ c+i∞

c−i∞
ds esp2

j̃
(

ln
1

eγEs µ2
, µ

)
, (3.7)

where the contour must be chosen to stay to the right of all discontinuities (i.e., c > 0).

Using the evolution equation (3.5) for the jet function, we find that the associated jet

function obeys the RG equation

d

d ln µ
j̃
(

ln
Q2

µ2
, µ

)
= −

[
2Γcusp(αs) ln

Q2

µ2
+ 2γJ (αs)

]
j̃
(

ln
Q2

µ2
, µ

)
, (3.8)

which is local in Q2 and analogous to the evolution equation (3.1) for the hard function.

The solution to this equation reads

j̃
(

ln
Q2

µ2
, µ

)
= exp

[
−4S(µi, µ) + 2aγJ (µi, µ)

](
Q2

µ2
i

)2aΓ(µi,µ)

j̃
(

ln
Q2

µ2
i

, µi

)
, (3.9)

where aγJ is defined in analogy with (3.3). Given this solution one can readily derive the

solution to the complicated evolution equation (3.5) for the original jet function by using

the inverse transformation (3.7). The result is

J(p2, µ) = exp
[
−4S(µi, µ) + 2aγJ (µi, µ)

] e−γEη

Γ(η)

∫ p2

0
dp′2

J(p′2, µi)

(µ2
i )

η(p2 − p′2)1−η
, (3.10)

where η = 2aΓ(µi, µ). This solution is valid as long as η > 0, which implies that µ < µi.

Equation (3.10) is analogous to the solution for the evolution equation of the B-meson

shape function found in [24, 32] using a technique developed in [38].

Using the connection between J and j̃ implied by Laplace transformation, it is possible

to derive an even more elegant expression for the jet function J(p2, µ), which does not

involve an integral and which is valid for both µ > µi and µ < µi. The result relates J

to the associated jet function j̃ evaluated at the scale µi, where it can be computed using

fixed-order perturbation theory. We obtain

J(p2, µ) = exp
[
−4S(µi, µ) + 2aγJ (µi, µ)

]
j̃(∂η , µi)

[
1

p2

(
p2

µ2
i

)η]

∗

e−γEη

Γ(η)
, (3.11)
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where ∂η denotes a derivative with respect to the quantity η. The star distribution is

defined as [32, 39]

∫ Q2

0
dp2

[
1

p2

(
p2

µ2

)η]

∗

f(p2) =

∫ Q2

0
dp2 f(p2) − f(0)

p2

(
p2

µ2

)η

+
f(0)

η

(
Q2

µ2

)η

, (3.12)

where f(p2) is a smooth test function. The subtraction term involving f(0) is required

only if η < 0. For small η, the above definition implies the expansion
[

1

p2

(
p2

µ2

)η]

∗

=
δ(p2)

η
+

[
1

p2

]

∗

+ η

[
1

p2
ln

p2

µ2

]

∗

+ O(η2) . (3.13)

The singularity for η → 0 is removed by the factor 1/Γ(η) in (3.11). In the form given

above, the expression for J(p2, µ) holds as long as η > −1, which is sufficient for all

practical purposes. For even smaller values of η it would be necessary to perform further

subtractions in (3.12) by using the double-star distributions introduced in [40].

3.3 Matching conditions and anomalous dimensions

To evaluate the resummed hard and jet functions at a common factorization scale µ requires

perturbative expressions for the matching functions CV (Q2, µh) and j̃(L,µi). We extract

the hard coefficient at a scale µh ∼ Q in the first matching step, and the associated jet

function at a scale µi ∼ Q
√

1 − x in the second. In this way, the matching functions are

free of large logarithms and can be reliably computed in fixed-order perturbation theory.

We also need perturbative expressions for the anomalous dimensions Γcusp, γV , and γJ .

The hard matching coefficient CV (Q2, µ) is extracted in the first matching step, when

the vector current in full QCD is matched onto an effective current built out of operators

in SCET. To obtain an expression for the Wilson coefficient one must compute, at a given

order in αs, perturbative expressions for the photon vertex function in the two theories. The

calculation is simplified greatly by performing these calculations on-shell, in which case all

loop graphs in the effective theory are scaleless and hence vanish. The bare on-shell vertex

function in QCD (called the on-shell quark form factor) has been studied extensively in the

literature. The form factor is infrared divergent and can be regularized using dimensional

regularization. The bare form factor at two-loop order was calculated long ago [41 – 44],

and recently the infrared divergent contributions have even been computed at three-loop

order [45]. When the (vanishing) SCET graphs are subtracted from the QCD result,

the infrared poles in 1/ε get transformed into ultraviolet poles. To obtain the matching

coefficient we introduce a renormalization factor ZV , which absorbs these poles. We then

compute

CV (Q2, µ) = lim
ε→0

Z−1
V (ε,Q2, µ)Fbare(ε,Q

2) , (3.14)

where on the right-hand side we must also eliminate the bare coupling constant in favor

of the renormalized coupling αs(µ). At two-loop order, we find (with L = ln(Q2/µ2) and

αs = αs(µ))

CV (Q2, µ) = 1+
CF αs

4π

(
−L2+3L−8+

π2

6

)
+ CF

(αs

4π

)2
[CF HF + CAHA + TF nfHf ] ,

(3.15)
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where

HF =
L4

2
−3L3+

(
25

2
− π2

6

)
L2+

(
−45

2
− 3π2

2
+ 24ζ3

)
L+

255

8
+

7π2

2
− 83π4

360
− 30ζ3 ,

HA =
11

9
L3+

(
−233

18
+

π2

3

)
L2+

(
2545

54
+

11π2

9
− 26ζ3

)
L

− 51157

648
− 337π2

108
+

11π4

45
+

313

9
ζ3 ,

Hf = −4

9
L3 +

38

9
L2+

(
−418

27
− 4π2

9

)
L+

4085

162
+

23π2

27
+

4

9
ζ3 . (3.16)

This result agrees with the corresponding expression given in [21]. The anomalous dimen-

sion of the vector current in SCET is obtained from the coefficient Z
(1)
V of the 1/ε pole

term via the relation

Γcusp(αs) ln
Q2

µ2
+ γV (αs) = 2αs

∂

∂αs
Z

(1)
V (Q2, µ) . (3.17)

Using the results of [45] the anomalous dimension can be extracted at three-loop order.

We reproduce the well-known expression for the three-loop cusp anomalous dimension

Γcusp [46]. For the quantity γV , we obtain

γV (αs) = −2αs

π
− (4.68−0.95nf )

(αs

π

)2
− (23.43−4.05nf +0.029n2

f )
(αs

π

)3
+ . . . . (3.18)

The exact analytic expressions for the expansion coefficients are given in the appendix.

The two-loop expression for the jet function has recently been obtained in [31] starting

from expression (2.18), by which the jet function is expressed in terms of a two-point

vacuum correlator in full QCD. Using those results, the two-loop matching condition for

the associated jet function is found to be2

j̃(L,µ) = 1 +
CF αs

4π

(
2L2 − 3L + 7 − 2π2

3

)
+ CF

(αs

4π

)2
[CF JF + CAJA + TF nfJf ] ,

(3.19)

where

JF = 2L4 − 6L3+

(
37

2
− 4π2

3

)
L2+

(
−45

2
+ 4π2 − 24ζ3

)
L+

205

8
− 97π2

12
+

61π4

90
− 6ζ3 ,

JA = −22

9
L3+

(
367

18
− 2π2

3

)
L2+

(
−3155

54
+

11π2

9
+ 40ζ3

)
L

+
53129

648
− 155π2

36
− 37π4

180
− 18ζ3 ,

Jf =
8

9
L3 − 58

9
L2+

(
494

27
− 4π2

9

)
L− 4057

162
+

13π2

9
. (3.20)

The anomalous dimension kernel entering (3.5) has been calculated at two-loop order [31].

In section 3.5 below, we will show that the difference (γJ − γV ) multiplies the δ(1 − z)

2Our function ej(L, µ) coincides with the object MN,DIS derived in [21] after the substitution L → −L

(and the correction of typographical errors in the preprint version of that paper).
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term in the Altarelli-Parisi splitting function Pq←q(z), which has recently been calculated

at three-loop order [46]. When combined with (3.18) this relation serves as a cross-check

of the two-loop result obtained from the direct calculation in [31], and further it can be

employed to extract the three-loop coefficient of the jet-function anomalous dimension. We

find

γJ(αs) = −αs

π
− (0.364−0.556nf )

(αs

π

)2
− (3.18−1.33nf +0.011n2

f )
(αs

π

)3
+ . . . . (3.21)

The exact analytic expressions for the expansion coefficients are given in the appendix.

3.4 Resummation of large logarithms

We are now ready to write down a resummed expression for the structure function

F ns
2 (x,Q2), valid to all orders in perturbation theory and at leading power in (1 − x)

and Λ2
QCD/M2

X . The result is

F ns
2 (x,Q2) =

∑

q

e2
q |CV (Q2, µh)|2

(
Q2

µ2
h

)−2aΓ(µh,µf )

× exp
[
4S(µh, µf ) − 4S(µi, µf ) − 2aγV (µh, µf ) + 2aγJ (µi, µf )

]

×j̃(∂η, µi)
e−γEη

Γ(η)
Q2

∫ 1

x
dξ

[
1

Q2(ξ/x−1)

(
Q2(ξ/x − 1)

µ2
i

)η]

∗

φns
q (ξ, µf ), (3.22)

where η = 2aΓ(µi, µf ), as above. To leading power, we could approximate (ξ/x − 1) →
(ξ − x), but we prefer to keep the full x dependence in our numerical studies below. The

“factorization scale” µf ≡ µ is, by definition, the scale at which the parton distribution

function is renormalized.

The Sudakov exponent can be simplified using the general relations

aΓ(µ1, µ2) + aΓ(µ2, µ3) = aΓ(µ1, µ3) ,

S(µ1, µ2) + S(µ2, µ3) = S(µ1, µ3) + ln
µ1

µ2
aΓ(µ2, µ3) . (3.23)

Introducing the short-hand notations

γφ = γJ − γV , aγφ = aγJ − aγV , (3.24)

we find after a straightforward calculation

F ns
2 (x,Q2) =

∑

q

e2
q |CV (Q2, µh)|2

(
Q2

µ2
h

)−2aΓ(µh,µi)

exp
[
4S(µh, µi)−2aγV (µh, µi)

]

× exp
[
2aγφ(µi, µf )

]
j̃
(

ln
Q2

µ2
i

+∂η, µi

)e−γEη

Γ(η)

∫ 1

x
dξ

φns
q (ξ, µf )[

(ξ/x−1)1−η
]
∗

. (3.25)

The remaining integral can be performed by noting that, on very general grounds, the

behavior of the parton distribution function near the endpoint can be parameterized as

φns
q (ξ, µf )|ξ→1 = N (µf ) (1 − ξ)b(µf )

[
1 + O(1 − ξ)

]
, (3.26)
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RG-impr. PT Log. Approx. Accuracy ∼ αn
s Lk Γcusp γV , γJ CV , j̃

— LL n + 1 ≤ k ≤ 2n (α−1
s ) 1-loop tree-level tree-level

LO NLL n ≤ k ≤ 2n (α0
s) 2-loop 1-loop tree-level

NLO NNLL n − 1 ≤ k ≤ 2n (αs) 3-loop 2-loop 1-loop

NNLO NNNLL n − 2 ≤ k ≤ 2n (α2
s) 4-loop 3-loop 2-loop

Table 1: Different approximation schemes for the evaluation of the resummed factorization for-

mula (3.28)

where b(µf ) > 0. We will see in the next subsection that this functional form is preserved

under RG evolution. Defining a K factor by the ratio

K(x,Q2, µf ) =
F ns

2 (x,Q2)∑
q e2

q xφns
q (x, µf )

, (3.27)

we now obtain our final expression

K(x,Q2, µf ) = |CV (Q2, µh)|2
(

Q2

µ2
h

)−2aΓ(µh,µi)

exp
[
4S(µh, µi)−2aγV (µh, µi)

]
(3.28)

× exp
[
2aγφ(µi, µf )

](
1−x

x

)η

j̃
(

ln
Q2

µ2
i

1−x

x
+∂η, µi

)e−γEηΓ(1+b(µf ))

Γ(1+b(µf ) + η)
,

where as before η = 2aΓ(µi, µf ). In this expression, the dependence on the two physical

scales Q2 and M2
X = Q2 1−x

x (neglecting the nucleon mass) is completely explicit. Our

exact result is independent of the scales µh and µi, at which QCD is matched onto the

intermediate and final effective theories, SCET(hc, c̄, sc) and SCET(c̄, sc), respectively. In

practice, a residual scale dependence remains once we truncate the perturbative expansions

of the various objects in the factorization formula. The final answer simplifies further if we

choose the “natural” values of the two matching scales, µh = Q and µi = MX . However,

we prefer to vary the matching scales over some reasonable range and take the variation of

the results as an estimate of higher-order perturbative effects. Note that by definition the

K factor does depend on the choice of the factorization scale µf . It is conventional in the

literature on DIS to identify µf with the hard scale Q. However, from the point of view of an

effective field theory it would be more natural to choose µf below the intermediate matching

scale µi ∼ Q
√

1 − x. A typical choice would be µf of order a few GeV, independent of the

dynamical variables x and Q.

In (3.25) and (3.28) we have accomplished the complete resummation of threshold

logarithms for F2 directly in momentum space. That the final answer is a convolution

(rather than a product) of a hard-scattering kernel with the parton distribution function

is reflected in the non-trivial dependence on the hadronic parameter b(µf ) describing the

large-ξ behavior of φns
q (ξ, µf ). Our factorized expression for the DIS structure function

is very similar to that for the B → Xsγ decay rate derived in [25]. Although the hard

functions and soft matrix elements differ, the jet function is the same in both cases. An

important advantage of our momentum-space approach is that in the limit where the two
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Figure 5: Comparison between fixed-order (dashed) and resummed results (solid) for the K factor.

The green curves are the LO result, red NLO, black NNLO. For the resummed result, we set µh =Q,

µi =MX , µf =Q, and b(µf )=4. The fixed-order result is obtained by setting all scales equal to µf .

matching scales are set equal to the factorization scale, µh = µi = µf , the resummed

results (3.25) and (3.28) automatically reduce to the corresponding expressions valid in

fixed-order perturbation theory (expanded about x = 1). Consequently, it is straightfor-

ward to match our resummed expressions onto fixed-order calculations valid outside the

threshold region.

The right-hand sides of (3.25) and (3.28) can be evaluated at any desired order in

resummed perturbation theory. table 3.4 shows what is required to obtain different levels

of accuracy in the perturbative evaluation of the result. In this work we adopt the counting

scheme of RG-improved perturbation theory, where at leading-order (LO) one includes all

terms of order 1, at next-to-leading order (NLO) one includes all terms of order αs, and

at next-to-next-to-leading order (NNLO) one includes all terms of order α2
s. We count

the large logarithms L ∈ {ln µh/µi, ln µi/µf , ln(1 − x)} like 1/αs. In the literature on

DIS, the LO approximation is also referred to as the next-to-leading logarithmic (NLL)

approximation, the NLO result is referred to as the next-to-next-to-leading logarithmic

(NNLL) approximation, etc. The leading logarithmic (LL) approximation is listed only for

completeness, as it neglects terms that are parametrically much larger than 1.

In figure 5, we compare the fixed-order calculation of the K factor with the resummed

result for Q = 5GeV and Q = 30 GeV. For the resummed result we use the default choice

of scales µh = Q, µi = MX = Q
√

1−x
x and take the asymptotic form of the parton

distribution (3.26) with b(µf ) = 4 in both cases. Following common practice we choose

µf = Q for the factorization scale. In this case the quantity η < 0, and because of

the factor (1−x
x )η in (3.28) the resummed results diverge as x approaches 1. The figure

illustrates that higher-order corrections become important as x → 1, and that fixed-order

perturbation theory is no longer adequate in this limit. The magnitude of the K factor
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Figure 6: Same as figure 5, but with a lower choice of the factorization scale. Specifically, we take

µf = 1.5GeV for Q = 5GeV (left), and µf = 10GeV for Q = 30GeV (right).
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Figure 7: Scale variation of the K factor at Q = 30GeV. The light-gray band is obtained by varying

MX/2 < µi < 2MX , while the dark-gray band arises from varying the hard scale Q/2 < µh < 2Q.

We set µf = 30GeV and b(µf ) = 4.

can be reduced by adopting a lower choice for the factorization scale, which is more in line

with the philosophy of an effective field-theory approach. For example, we may consider

taking µf ≈ MX(x = 0.9) ≈ Q/3, corresponding to a typical hadronic invariant mass in

the endpoint region. The corresponding results are shown in figure 6. We observe that

with such a choice of the factorization scale the K factor takes more moderate values, and

also that the effects of resummation are less significant.

In figure 7, we show the scale dependence of the result obtained by varying the hard and

intermediate scales by a factor of 2 about their default values. The figure shows a dramatic

reduction in scale uncertainty when going from LO to NNLO. It also suggests that varying
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Figure 8: Same as figure 5, but now including the suppression factor (1− x)b with b(µf ) = 4 from

the parton distribution function.

the two matching scales individually by a factor of 2 may overestimate the perturbative

uncertainty, because the higher-order results lie near the center of the large band obtained

by varying the renormalization scales in the low-order ones. A variation of the scales by a

factor of
√

2 better represents the uncertainty in the present case. Furthermore, it seems

reasonable to perform the scale variations in such a way that the hierarchy of scales µh > µi

is preserved.

We stress that the resummation of large logarithms accomplished in (3.28) is under

perturbative control as long as (1 − x) À Λ2
QCD/Q2, since only then is the intermediate

matching scale µi ∼ Q
√

1 − x À ΛQCD a short-distance scale. Physically, this condition

is equivalent to saying that the final-state jet can be treated in an inclusive way using a

partonic language. Numerically, we can assume that perturbation theory at the jet scale

breaks down in the region where MX < 1 GeV. We illustrate this boundary in our x-space

results with the gray band in figure 5. For Q = 5GeV, our approach is valid as long as

x < 0.96. For Q = 30 GeV, it extends all the way to x < 0.999, so that in this case the band

is not visible on the scale of the plot. While our theoretical description breaks down very

close to the endpoint, we note that weighted integrals of the jet function over an interval

x ∈ [x0, 1] can be calculated starting from (3.25) as long as x0 is in the short-distance

domain.

Experimentally, structure functions at large x are very difficult to measure, because

of the rapid decrease of the parton distribution function as x → 1. This is illustrated in

figure 8, where we include the suppression factor from the parton distribution. Because of

this strong suppression, there are no measurements of the non-singlet structure function for

x > 0.9 [47 – 49]. The experiments that probed the highest x-values were fixed-target ex-

periments in the 1970s and 1980s at SLAC [50] and the BCDMS experiment at CERN [51].

Newer experiments only cover x ≤ 0.65. As a consequence, the threshold resummation in
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DIS is currently of limited phenomenological importance. However, the resummation is

relevant for W or Higgs production at hadron colliders, which can also be analyzed with

the methods developed here.

3.5 Parton evolution near the endpoint

The easiest way to derive the evolution equation for the parton distribution function in the

limit x → 1 is to use that the factorized expression (2.24) for the structure function F2 must

be independent of the arbitrary renormalization scale µ, and to combine this information

with the known scale dependences of the hard and jet functions, given in (3.1) and (3.5).

This yields

d

d ln µ
φns

q (ξ, µ) = 2γφ(αs)φns
q (ξ, µ) + 2Γcusp(αs)

∫ 1

ξ
dξ′

φns
q (ξ′, µ)

[ξ′ − ξ]∗

=

∫ 1

ξ

dz

z
P (endpt)

q←q (z)φns
q

(ξ

z
, µ

)
, (3.29)

where

P (endpt)
q←q (z) =

2Γcusp(αs)

(1 − z)+
+ 2γφ(αs) δ(1 − z) (3.30)

is the z → 1 limit of the Altarelli-Parisi splitting function Pq←q(z), which is known from

direct calculation at three-loop order [46]. The asymptotic form of the splitting function

near the endpoint given above holds to all orders in perturbation theory, up to corrections

of order (1 − z). Recall that the anomalous dimension γφ was defined as the difference of

the anomalous dimensions γJ and γV of the jet function and SCET current, see (3.24). Re-

lation (3.30) thus provides a check of our two-loop results for these anomalous dimensions,

and it furthermore allows us to deduce the value of the three-loop coefficient γJ
2 given in

relation (A.6) of the appendix.

The exact solution to the evolution equation (3.29) can be found in analogy with (3.10).

It reads

φns
q (ξ, µf ) = exp

[
2aγφ(µf , µ0)

] e−γEσ

Γ(σ)

∫ 1

ξ
dξ′

φns
q (ξ′, µ0)

(ξ′ − ξ)1−σ
, (3.31)

where this time σ = 2aΓ(µf , µ0), and µ0 denotes the scale at which the initial condition

for φns
q is given. For the hadronic parameters N and b governing the asymptotic behavior

of the parton distribution function in (3.26), this relation implies

b(µf ) = b(µ0) + 2aΓ(µf , µ0) ,

N (µf ) = N (µ0) exp
[
2aγφ(µf , µ0)

] eγE b(µ0) Γ(1 + b(µ0))

eγE b(µf ) Γ(1 + b(µf ))
. (3.32)

These evolution equations ensure that the µf dependence on the two sides of relation (3.28)

is indeed the same. The first result is particularly simple and interesting. Since aΓ(µf , µ0) >

0 for µf > µ0, it follows that the coefficient b(µ) increases with µ, a fact incompatible with

the naive counting rule result b = 3 [52, 53]. In other words, such a counting rule could

possibly hold only at a specific renormalization point.
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4. Connection with the standard approach

The conventional approach to threshold resummation in DIS proceeds via moment space

and inverse Mellin transformations [1, 2]. The purpose of this section is twofold; first, to

show that our momentum-space resummation is formally equivalent to the conventional

resummation order by order in perturbation theory, and second, to point out and quantify

the theoretical and numerical differences that appear in applications to physical quantities

such as the DIS structure function.

We first recall some details of the conventional approach to threshold resummation in

moment space. By taking moments of the structure function F ns
2 , convolution integrals

such as (2.9) or (2.24) can be brought into product form. The traditional way of writing

the result is

F ns
2,N (Q2) =

∫ 1

0
dxxN−1F ns

2 (x,Q2) = CN (Q2, µf )
∑

q

e2
q φns

q,N+1(µf ) . (4.1)

where the moments of C(Q2, z, µ) and φns
q (ξ, µ) are defined in analogy to those of

F ns
2 (x,Q2). For large N , the function CN is then split into two pieces according to

CN (Q2, µf ) = g0(Q
2, µf ) exp

[
GN (Q2, µf )

]
+ O

( 1

N

)
, (4.2)

where g0 contains all N -independent contributions, while the function GN contains loga-

rithms of the form lnk N . The limit x → 1 in momentum space corresponds to the limit

N → ∞ in moment space, so this formula achieves the exponentiation of large threshold

logarithms. The resummation exponent GN is written as

GN (Q2, µf ) =

∫ 1

0
dz

zN−1 − 1

1 − z

[∫ (1−z)Q2

µ2

f

dk2

k2
Aq(αs(k)) + Bq

(
αs(Q

√
1 − z)

)
]

, (4.3)

where the functions Aq and Bq are universal radiation factors determined by matching with

results from fixed-order perturbation theory.

We shall now derive an equation relating the objects g0, Aq, and Bq in (4.2) and (4.3)

to the matching coefficients and anomalous dimensions defined in effective field theory.

We begin by transforming the factorization formula (2.24) into Mellin space, obtaining the

product form

F ns
2,N (Q2) = |CV (Q2, µf )|2 JN (Q2, µf )

∑

q

e2
q φns

q,N+1(µf ) , (4.4)

which is valid up to corrections in 1/N . The Mellin-transformed jet function is defined as

JN (Q2, µ) =

∫ Q2

0
dp2

(
1 − p2

Q2

)N−1

J(p2, µ) . (4.5)

It was shown in [31] that for large N the jet-function moments JN are given by

JN (Q2, µ) = j̃
(

ln
Q2

N̄µ2
, µ

)
+ O

( 1

N

)
, N̄ ≡ eγE N , (4.6)
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and hence obey the same evolution equation (3.8) as the associated jet function. Using this

connection along with the results derived in section 3, the resummed coefficient function

CN in (4.1) can be written as

CN (Q2, µf ) = |CV (Q2, µh)|2
(

Q2

µ2
h

)−2aΓ(µh,µi)

exp
[
4S(µh, µi) − 2aγV (µh, µi)

]

× exp
[
2aγφ(µi, µf ) − 2 ln N̄ aΓ(µi, µf )

]
j̃
(

ln
Q2

N̄µ2
i

, µi

)
+ O

( 1

N

)
. (4.7)

We now adopt the “natural” scale choices µh = Q and µi = Q/
√

N̄ , which are implicit

in most treatments of threshold resummation in the literature. This allows us to compare

with the standard expression (4.2), but as we will discuss at the end of this section, this scale

choice becomes problematic when the expressions for the moments are transformed back

to x-space. Next, we express the RG functions S(µ1, µ2) and an(µ1, µ2) defined in (3.3)

in terms of integrals over the appropriate anomalous dimensions. After a straightforward

calculation, this leads to

gSCET
0 (Q2, µf ) = |CV (Q2, Q)|2 j̃(0, Q) exp

[∫ Q2

µ2

f

dk2

k2
γφ(αs(k))

]
,

GSCET
N (Q2, µf ) =

∫ Q2

Q2/N̄

dk2

k2

[
ln

k2

Q2
Γcusp(αs(k)) − γJ(αs(k)) − d ln j̃(0, k)

d ln k2

]

− ln N̄

∫ Q2/N̄

µ2

f

dk2

k2
Γcusp(αs(k)) , (4.8)

where we have defined the split between the two terms such that the expression for GN

obtained in the large-N limit vanishes for N̄ → 1.

Our next task is to bring the exponent GN from the standard result (4.3) into a

form resembling the SCET result (4.8). Since the running coupling αs(k) depends on its

argument logarithmically, a helpful identity is (for integer k ≥ 0)

∫ 1

0
dz

zN−1 − 1

1 − z
lnk(1 − z) =

1

k + 1
Ik+1

(
ln

1

N̄

)
+ O

( 1

N

)
, (4.9)

where

In(x) = ∂n
ε

[
eε(x+γE) Γ(1 + ε)

]
ε→0

(4.10)

are n-th order polynomials defined in [25]. With the help of these relations we find that

for large N

GN (Q2, µf ) =

∫ Q2

Q2/N̄

dk2

k2

[
ln

k2

Q2
Aq(αs(k)) − Bq(αs(k))

]
+ ∆G

( Q√
N̄

)

− ln N̄

∫ Q2/N̄

µ2

f

dk2

k2
Aq(αs(k)) + O

( 1

N

)
, (4.11)
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where

∆G(µ) =

∞∑

k=1

Ik+1(0)

(k + 1)!

[
A(k−1)

q (αs(µ)) + B(k)
q (αs(µ))

]
, (4.12)

and A
(n)
q , B

(n)
q denote the n-th derivatives of Aq and Bq with respect to ln µ2. The per-

turbative expansion of ∆G starts at order αs. Contrary to the SCET expression in (4.8),

the result (4.11) does not vanish for N̄ → 1. The overall normalization of GN (Q2, µf ) is

a matter of convention, since it can be absorbed into g0(Q
2, µf ). Taking the difference in

normalization into account, the two definitions underlying (4.8) and (4.11) are connected by

g0(Q
2, µf ) = gSCET

0 (Q2, µf ) exp [−∆G(Q)] ,

GN (Q2, µf ) = GSCET
N (Q2, µf ) + ∆G(Q) . (4.13)

At the expense of a proliferation of γE terms in the perturbative expressions, one can equally

well normalize G1(Q
2, µf ) = 0. This normalization condition is adopted, e.g., in [4].

Equation (4.11) is consistent with (4.8) if we identify Aq(αs) = Γcusp(αs) with the cusp

anomalous dimension, and furthermore require that

Bq(αs(µ)) +
d∆G(µ)

d ln µ2
= γJ(αs(µ)) +

d ln j̃(0, µ)

d ln µ2
. (4.14)

This formula can be rearranged to read

eγE∇ Γ(1 + ∇)Bq(αs) = γJ(αs) + ∇ ln j̃(0, µ) −
[
eγE∇ Γ(∇) − 1

∇

]
Γcusp(αs) , (4.15)

where

∇ =
d

d ln µ2
=

β(αs)

2

∂

∂αs
, (4.16)

and the differential operators are defined by their Taylor expansions. Evaluating (4.15) in

perturbation theory we obtain3

Bq,1 = γJ
0 ,

Bq,2 = γJ
1 − β0b

(1)
0 ,

Bq,3 = γJ
2 − β1b

(1)
0 − β0

[
2b

(2)
0 −

(
b
(1)
0

)2
+

π2

6

(
γJ
0

)2 − 2ζ3Γ0γ
J
0 +

π4

360
Γ2

0

]
, (4.17)

where the one- and two-loop matching coefficients b
(1)
0 and b

(2)
0 have been calculated in [31].

Computing the first three Bq,n coefficients using the three-loop result for the anomalous

dimension γJ given in the appendix, we find agreement with the expressions derived in [4].

Ref. [17] identified the function Bq with the jet-function anomalous dimension γJ , which

is incorrect already at two-loop order.

Equations (4.15) and (4.17) provide the desired relations between the function Bq

of the standard approach and the field-theoretical objects defined in the effective theory.

3A relation similar to (4.15) has been derived in [21]; however, there is a typo in the last equation in

(75) of that paper, which is the analog of our relation between Bq,3 and γJ
2 .
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Obviously, the connection between the various objects is highly non-trivial. This explains,

perhaps, why it has proven difficult in the past to translate between the standard formalism

and the approach based on SCET. The deeper reason is that in the conventional approach

the RG evolution equations of SCET are replaced by a different set of partial differential

equations [1, 2], whose solution is equivalent to our solution but not structurally identical

to it. In particular, there are theoretical and numerical differences between the moment-

space and momentum-space resummation procedures. Some of these are explicit in the

particular form of the resummation exponent (4.3) obtained in moment space, and some

become apparent only when performing the inverse Mellin transform. We conclude this

section by examining these differences in more detail.

A troublesome feature of the conventional moment-space approach is that the integrals

over the coupling constant in the resummation exponent run over the region where αs(µ)

is evaluated at very small values of µ. To leading order, the coupling behaves as

αs(µ) =
4π

β0 ln(µ2/Λ2
QCD)

(4.18)

and becomes infinite at the scale µ = ΛQCD. When the integration variable z in (4.3)

approaches 1, the resummation exponent becomes sensitive to this Landau-pole singularity

in the running coupling. As a result the integral is ambiguous, since one can arbitrarily

choose a prescription for dealing with the pole. We can estimate the magnitude of the

ambiguity by taking the difference of the z-integral evaluated above or below the Landau

pole in (4.3). The result is

∆GN = −2πi

β0

(
Γ0 + γJ

0

)
(N − 1)

Λ2
QCD

Q2
+ O

(
N2Λ4

QCD

Q4

)
, (4.19)

which is of the form of a power correction of order Λ2
QCD/M2

X . Note that this ambiguity

never appears in the momentum-space formulation, and should therefore be interpreted

as an artifact of resummation in moment space. As stressed earlier, the Landau-pole

ambiguity does not imply an infrared renormalon-pole ambiguity of the same strength

Λ2
QCD/M2

X . To show that GN is indeed affected by a corresponding renormalon pole,

one needs to evaluate the exponent in the large-β0 limit, a fixed-order truncation of this

quantity is not sufficient [7]. On general grounds, one expects anomalous dimensions to be

free of infrared renormalons, so that the renormalon poles enter only through the associated

jet function j̃(0, µ) in (4.15). In the effective theory, renormalons affect only the matching

coefficients, CV and j̃, and will always be commensurate with power-suppressed operators.

RG evolution, on the other hand, is driven by anomalous dimensions which are free of

renormalons.

Further differences become apparent when studying the inverse Mellin transformation

needed to obtain the physical momentum-space results from the moment-space expressions.

While our result (3.28) obtained directly in x-space is completely analytical, the inverse

Mellin transform can only be performed numerically, by evaluating the integral

F ns
2 (x,Q2) =

1

2πi

∫ c+i∞

c−i∞
dN x−NCN (Q2, µf )φns

q,N+1(µf ) . (4.20)
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Figure 9: Comparison between Mellin-inverted moment space results (dashed) and results obtained

in directly in x-space (solid). The green curves are the LO result, red NLO. The black lines are

NNLO results and are visually indistinguishable from the NLO curves for Q = 30GeV. We set

µh = µf = Q, and b(µf ) = 4. For the intermediate scale, we choose µi = MX in momentum space

and µi = Q/
√

N̄ in moment space.

The Mellin inversion is actually ambiguous, because the expression for CN has a Landau

pole for large N . We deal with this pole by adopting the so-called minimal prescription [5],

which amounts to excluding the Landau pole from the integration contour by choosing the

constant c smaller than the value of N at which the pole occurs. Even with this prescrip-

tion, the numerical integral is not well behaved in the limit x → 1, since the damping of

the integrand becomes weaker and weaker as x approaches the endpoint. In figure 9 we

compare the results for the x-space structure function obtained through numerical Mellin

inversion with those obtained directly in momentum space (3.28). One source of numerical

differences arises because the relation (4.6) is only approximate,4 so that the solution to

the RG equation for JN (Q2, µ) receives corrections which are suppressed as 1/N , while

our momentum-space solution (3.11) is exact. Another is that the default choice of the

intermediate scale µi is different in the two approaches. The numerical differences are

noticeable for smaller values of Q, but become negligible at Q = 30 GeV.

In the effective-theory result for the moments, the Landau pole in the inverse Mellin

transformation can be avoided by performing the inversion to x-space with the appropriate

scale choice for momentum space, µi ≈ Q
√

1 − x, instead of µi = Q/
√

N̄ . The freedom

to choose the scales as appropriate for the quantity under consideration is an important

advantage of our approach. The Landau-pole ambiguity in the Mellin inversion is not the

only problem that arises from the fact that the scales cannot be varied in the standard

resummation formalism. An additional difficulty was pointed out in [5]. To illustrate it, let

us consider the structure function at the leading logarithmic level, even though this is not

4The exact form of the RG equation obeyed by the jet-function moments can be found in [31].
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a consistent approximation in RG-improved perturbation theory. Our result (3.28) then

reduces to

K(x,Q2, µf ) = exp [4S(µh, µi) + 2aΓ(µi, µf ) ln(1 − x)] , (4.21)

where we have approximated 1−x
x ≈ 1 − x. From (3.28), we see that we have to choose

µh ∼ Q to make the double logarithms in the perturbative expansion of the hard matching

coefficient CV (Q2, µ) small. Similarly, to avoid the appearance of large logarithms in the

associated jet function j̃(ln
M2

X

µ2
i

, µ), the choice µi ∼ MX is mandatory. Let us now look at

the structure function integrated over the endpoint region

Fns
2 (x,Q2) =

∫ 1

1−x
dy F ns

2 (y,Q2) . (4.22)

In this case, the appropriate choice of the intermediate scale for integral Fns
2 (x,Q2) is

µi ∼ Q
√

1 − x, as can be checked by explicitly performing the integral over (3.28). If one

instead chooses the scale µi to avoid logarithms on the level of the integrand, then the

integral (4.22) becomes singular. To see the problem, we set µf = µh = Q, µi ≈ Q
√

1 − y

and, for illustration purposes, approximate the Sudakov factor by expanding it to leading

order around fixed coupling αs(Q), as was done in [5]. The integral (4.22) then becomes

Fns
2 (x,Q2) =

∫ 1

1−x
dy

∑

q

e2
q y φns

q (y,Q) exp

[
−a ln2 µ2

i

µ2
h

+ 2a ln
µ2

i

µ2
f

ln(1 − y)

]

=

∫ 1

1−x
dy

∑

q

e2
q y φns

q (y, µf ) exp
[
a ln2(1 − y)

]
, (4.23)

with a = Γ0
αs(Q)

8π . Because the exponential factor grows faster than any power as y → 1,

this integral diverges. Its expansion in a is an asymptotic series with factorially growing

terms. As was shown in [5] the ambiguity associated with the non-integrable singularity

for y → 1 is of order

e−1/4a ∼
(ΛQCD

Q

) β0

4CF ≈
(ΛQCD

Q

)1.4
(4.24)

for nf = 5. In [5] it was shown that the above divergence does not occur if the Sudakov

resummation is performed in moment space and the inverse transformation is performed

exactly, without dropping subleading logarithms ln(1−x). From this, the authors concluded

that the appropriate place to perform resummations is moment space and that leading

logarithmic resummations in x-space are problematic. Our analysis shows that it is simply

a bad choice of scale that produces the problem of the spurious power correction: the

usual moment-space formalism produces logarithms ln2 N in the Sudakov exponent, which

translates into ln2(1−x) at leading logarithmic accuracy, which in turn causes the problem

in (4.23). However, the proper way to perform the calculation is to keep the matching scales

arbitrary and choose them such that the final result of a given calculation does not contain

large logarithms. This avoids the above problem as well as the occurrence of Landau-pole

ambiguities in inverse Mellin transforms.
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We hope that the above discussion helps to overcome the misconception that Mellin

moment space is the “correct place” to perform the threshold resummation, and that

resummation in x-space leads to inconsistent results. Quite to the contrary, the final

analytical formulae we obtain in momentum space are simpler than those derived in moment

space, they are free of spurious, unphysical power ambiguities and, as figure 9 shows, the

perturbative expansion in x-space exhibits a better apparent convergence.

5. Summary and conclusions

We analyzed DIS in the threshold region x → 1 using SCET. With a detailed analysis in

the effective theory, we rederived the standard QCD factorization theorem [1 – 3] for the

non-singlet structure function F ns
2 (x,Q2). While this process had been investigated in the

effective theory before [17 – 22], we argued that previous studies were incomplete. Our anal-

ysis resolves the issues left open in these papers. We agree with [18] that in a diagrammatic

analysis momentum modes with low virtuality appear. Their presence is a consequence of

the fact that in the limit x → 1 one parton carries nearly all the momentum of the nucleon

and the characteristic scale associated with the target remnants is m2(1 − x), at least in

a perturbative analysis. However, here we have shown that these modes do not translate

into non-perturbative Q dependence in the parton distribution function. In [17] it was

argued that such momentum regions do not contribute to the effective-theory calculation,

and in [20] that they would be screened away non-perturbatively. Since these target rem-

nants are part of the endpoint parton distribution function, it is incorrect to exclude them

from the effective-theory factorization analysis, and there is no need to invoke a mecha-

nism which eliminates them. For the same reason, there are no extra “soft” contributions

outside the parton distribution function, contrary to what was postulated in [19].

With the factorization theorem at hand, we then performed the resummation of large

logarithms by solving the RG equations of the effective theory. Our result involves three

scales: a hard matching scale µh, a jet scale µi, and the factorization scale µf . By choosing

the perturbative scales to satisfy µh ∼ Q and µi ∼ MX , we avoid the presence of large

logarithms. This approach has several advantages compared to the standard resummation

technique for DIS. It enables us to derive a simple analytic expression for the resummed

structure function directly in x-space, thus circumventing the problems associated with

moment-space resummation. We can also estimate the higher-order perturbative uncer-

tainties by varying the matching scales. It is trivial to recover the fixed-order result by

setting all scales equal, µh = µi = µf . This makes it straightforward to combine our results

with fixed-order calculations valid away from the threshold region.

An advantage of the effective-theory approach is that the resummed results are free of

Landau-pole ambiguities. In the standard approach, these appear twice: in the resummed

exponent in moment space and also in the Mellin inversion back to momentum space.

Since we perform the resummation in momentum space by integrating out the higher scales

and using RG evolution to go to lower scales, our expressions do not involve the strong

coupling constant evaluated at scales below the minimum of the intermediate matching

scale and the factorization scale at which the parton distribution function is renormalized.
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Therefore, Landau-pole ambiguities do not arise at any finite order in perturbation theory.

We showed that our results are formally equivalent to the standard ones order by order in

perturbation theory. This allowed us to relate the radiation function Bq to a combination of

the anomalous dimension γJ of the jet function and effective-theory matching coefficients.

The two objects Bq and γJ are identical at leading order, but beyond this the relation is

highly non-trivial.

Since the parton distribution functions fall off very rapidly near x → 1, it is experi-

mentally challenging to measure structure functions at large x. For this reason the amount

of available experimental information near threshold is very limited. However, because of

its relative simplicity and since the perturbative quantities are known with high precision,

the threshold resummation for DIS has provided us with an ideal setup to develop our

formalism. In the future, we plan to use the same approach to perform resummations in

other, phenomenologically more relevant situations.
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A. Sudakov exponent and anomalous dimensions

The exact solutions (3.4) to the RG equations (3.3) can be evaluated by expanding the

anomalous dimensions and the QCD β-function as perturbative series in the strong cou-

pling. We work consistently at NNLO in RG-improved perturbation theory, keeping terms

through order α2
s in the final expressions for the Sudakov exponent S and the functions

aΓ, aγV , and aγJ . We define the expansion coefficients as

Γcusp(αs) = Γ0
αs

4π
+ Γ1

(αs

4π

)2
+ Γ2

(αs

4π

)3
+ Γ3

(αs

4π

)4
+ . . . ,

β(αs) = −2αs

[
β0

αs

4π
+ β1

(αs

4π

)2
+ β2

(αs

4π

)3
+ β3

(αs

4π

)4
+ . . .

]
, (A.1)

and similarly for the other anomalous dimensions. In terms of these quantities, the function

aΓ is given by

aΓ(ν, µ) =
Γ0

2β0

{
ln

αs(µ)

αs(ν)
+

(
Γ1

Γ0
− β1

β0

)
αs(µ) − αs(ν)

4π

+

[
Γ2

Γ0
− β2

β0
− β1

β0

(
Γ1

Γ0
− β1

β0

)]
α2

s(µ) − α2
s(ν)

32π2
+ . . .

}
. (A.2)
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The result for the Sudakov factor S is more complicated. We obtain

S(ν, µ) =
Γ0

4β2
0

{
4π

αs(ν)

(
1 − 1

r
− ln r

)
+

(
Γ1

Γ0
− β1

β0

)
(1 − r + ln r) +

β1

2β0
ln2 r

+
αs(ν)

4π

[ (
β1Γ1

β0Γ0
− β2

β0

)
(1 − r + r ln r) +

(
β2

1

β2
0

− β2

β0

)
(1 − r) ln r

−
(

β2
1

β2
0

− β2

β0
− β1Γ1

β0Γ0
+

Γ2

Γ0

)
(1 − r)2

2

]

+

(
αs(ν)

4π

)2
[(

β1β2

β2
0

− β3
1

2β3
0

− β3

2β0
+

β1

β0

(
Γ2

Γ0
− β2

β0
+

β2
1

β2
0

− β1Γ1

β0Γ0

)
r2

2

)
ln r

+

(
Γ3

Γ0
− β3

β0
+

2β1β2

β2
0

+
β2

1

β2
0

(
Γ1

Γ0
− β1

β0

)
− β2Γ1

β0Γ0
− β1Γ2

β0Γ0

)
(1 − r)3

3

+

(
3β3

4β0
− Γ3

2Γ0
+

β3
1

β3
0

− 3β2
1Γ1

4β2
0Γ0

+
β2Γ1

β0Γ0
+

β1Γ2

4β0Γ0
− 7β1β2

4β2
0

)
(1 − r)2

+

(
β1β2

β2
0

− β3

β0
− β2

1Γ1

β2
0Γ0

+
β1Γ2

β0Γ0

)
1 − r

2

]
+ . . .

}
, (A.3)

where r = αs(µ)/αs(ν). Whereas the three-loop anomalous dimensions and β-function are

required in (A.2), the expression for S also involves the four-loop coefficients Γ3 and β3.

We now list expressions for the anomalous dimensions and the QCD β-function, quoting

all results in the MS renormalization scheme. For the convenience of the reader, we also

give numerical results for nf = 5. The expansion of the cusp anomalous dimension Γcusp

to two-loop order was obtained some time ago [10], while recently the three-loop coefficient

has been obtained in [46]. For the four-loop coefficient Γ3, we use the Padé approximants

derived in [4]. The results are

Γ0 = 4CF =
16

3
,

Γ1 = 4CF

[(
67

9
− π2

3

)
CA − 20

9
TF nf

]
≈ 36.8436 ,

Γ2 = 4CF

[
C2

A

(
245

6
− 134π2

27
+

11π4

45
+

22

3
ζ3

)
+ CATF nf

(
−418

27
+

40π2

27
− 56

3
ζ3

)

+CF TF nf

(
−55

3
+ 16ζ3

)
− 16

27
T 2

F n2
f

]
≈ 239.208 ,

Γ3 ≈ 7849, 4313, 1553 for nf = 3, 4, 5 . (A.4)

The anomalous dimension γV can be determined up to three-loop order from the partial

three-loop expression for the on-shell quark form factor in QCD, which has recently been

obtained in [45]. We find

γV
0 = −6CF = −8 ,

γV
1 = C2

F

(
−3 + 4π2 − 48ζ3

)
+ CF CA

(
−961

27
− 11π2

3
+ 52ζ3

)
+ CF TF nf

(
260

27
+

4π2

3

)
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≈ 1.1419 ,

γV
2 = C3

F

(
−29 − 6π2 − 16π4

5
− 136ζ3 +

32π2

3
ζ3 + 480ζ5

)

+ C2
F CA

(
−151

2
+

410π2

9
+

494π4

135
− 1688

3
ζ3 −

16π2

3
ζ3 − 240ζ5

)

+ CF C2
A

(
−139345

1458
− 7163π2

243
− 83π4

45
+

7052

9
ζ3 −

88π2

9
ζ3 − 272ζ5

)

+ C2
F TF nf

(
5906

27
− 52π2

9
− 56π4

27
+

1024

9
ζ3

)

+ CF CATF nf

(
−34636

729
+

5188π2

243
+

44π4

45
− 3856

27
ζ3

)

+ CF T 2
F n2

f

(
19336

729
− 80π2

27
− 64

27
ζ3

)
≈ −249.388 . (A.5)

The results for the expansion coefficients of the jet-function anomalous dimension γJ are

γJ
0 = −3CF = −4 ,

γJ
1 = C2

F

(
−3

2
+2π2−24ζ3

)
+CF CA

(
−1769

54
− 11π2

9
+40ζ3

)
+CF TF nf

(
242

27
+

4π2

9

)

≈ 38.6763 ,

γJ
2 = C3

F

(
−29

2
− 3π2 − 8π4

5
− 68ζ3 +

16π2

3
ζ3 + 240ζ5

)

+ C2
F CA

(
−151

4
+

205π2

9
+

247π4

135
− 844

3
ζ3 −

8π2

3
ζ3 − 120ζ5

)

+ CF C2
A

(
−412907

2916
− 419π2

243
− 19π4

10
+

5500

9
ζ3 −

88π2

9
ζ3 − 232ζ5

)

+ C2
F TF nf

(
4664

27
− 32π2

9
− 164π4

135
+

208

9
ζ3

)

+ CF CATF nf

(
−5476

729
+

1180π2

243
+

46π4

45
− 2656

27
ζ3

)

+ CF T 2
F n2

f

(
13828

729
− 80π2

81
− 256

27
ζ3

)
≈ 204.816 . (A.6)

Finally, the expansion coefficients for the QCD β-function to four-loop order are

β0 =
11

3
CA − 4

3
TF nf =

23

3
,

β1 =
34

3
C2

A − 20

3
CATF nf − 4CF TF nf ≈ 38.6667 , (A.7)

β2 =
2857

54
C3

A +

(
2C2

F − 205

9
CF CA − 1415

27
C2

A

)
TF nf +

(
44

9
CF +

158

27
CA

)
T 2

F n2
f

≈ 180.907 ,

β3 =
149753

6
+ 3564ζ3 −

(
1078361

162
+

6508

27
ζ3

)
nf +

(
50065

162
+

6472

81
ζ3

)
n2

f +
1093

729
n3

f

≈ 4826.16 , (A.8)
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where the value of β3 is taken from [54] and corresponds to Nc = 3 and TF = 1
2 .
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